Contents

Abbreviations 10

Preface 11

1 Introduction 13

2 Energy 17
 2.1 Reasons for ME as the basis for feed evaluation 17
 2.2 Determination of ME in feeds 19
 2.2.1 Calculation in consideration of digestibility 19
 2.2.2 Estimation of ME in compound feeds 23
 2.3 ME requirements 23
 2.3.1 Maintenance requirements 23
 2.3.1.1 Influence of ambient temperature on energy requirements 25
 2.3.1.2 Energy required for physical activity 28
 2.3.2 Requirement for growth 28
 2.3.2.1 Accretion of protein and fat 29
 2.3.2.2 Retention of energy 33
 2.3.2.3 Utilization of ME for retention of energy 34
 2.3.3 Requirements for pregnancy 35
 2.3.4 Requirements for lactation 36

3 Amino acids and crude protein 39
 3.1 Introduction 39
 3.2 Requirements for maintenance 40
 3.3 Requirements for growth 42
 3.3.1 Accretion of protein and amino acids 42
 3.3.2 Utilization of precaecally digestible lysine 45
 3.3.3 Consideration of further essential amino acids 47
 3.4 Requirements for pregnancy 49
 3.5 Requirements for lactation 50
 3.5.1 Derivation of lysine requirement 51
 3.5.2 Deriving requirements of further essential amino acids 54
Contents

4 Recommendations for the supply of energy, amino acids and crude protein

- 4.1 Rearing piglets 57
- 4.2 Growing/fattening pigs 62
- 4.3 Gilts 69
- 4.4 Sows 72
- 4.4.1 Pregnancy 73
- 4.4.2 Lactation 80
- 4.5 Rearing boars 83
- 4.6 References (chapters 2, 3, 4, 9) 86

5 Recommendations for the supply of major elements

- 5.1 Introduction 109
- 5.2 Factors of net requirement 109
- 5.2.1 Accretion in the growing pig 109
- 5.2.2 Deposition in the pregnant sow 112
- 5.2.3 Secretion in milk 112
- 5.2.4 Inevitable losses 113
- 5.3 Utilization 115
- 5.3.1 Technical terms 115
- 5.3.2 Digestibility of phosphorus and effect of microbial phytase 116
- 5.3.3 Assumed overall utilization of other major elements 118
- 5.4 Summary of factors for recommendations of supply 119
- 5.5 Deriving recommendations of supply 120
- 5.5.1 Rearing piglets 121
- 5.5.2 Growing/fattening pigs 122
- 5.5.3 Sows 123
- 5.5.3.1 Pregnancy 123
- 5.5.3.2 Lactation 124
- 5.5.3.3 Rearing of breeding animals 125
- 5.5.3.4 Boars 125
- 5.6 References 126
Recommendations for the supply of trace elements

6.1 Introduction 131
6.2 Summarizing recommendation for supply 131
6.3 Copper 132
6.4 Iodine 134
6.5 Iron 136
6.6 Manganese 138
6.7 Selenium 140
6.8 Zinc 141
6.9 Other trace elements 144
6.10 References 145

Recommendations for the supply of vitamins

7.1 Fat soluble vitamins 153
7.1.1 Characterization of fat soluble vitamins 153
7.1.2 Summarizing recommendations of supply 154
7.1.3 Vitamin A 155
7.1.4 Vitamin D 158
7.1.5 Vitamin E (tocopheroles, tocotrienoles) 160
7.1.6 Vitamin K 163
7.2 Water soluble vitamins 165
7.2.1 Summarizing recommendation for supply 165
7.2.2 Thiamine (vitamin B1) 167
7.2.3 Riboflavin (vitamin B2, lactoflavin) 168
7.2.4 Niacin (nicotinic acid, nicotinic acid amid) 169
7.2.5 Pantothenic acid 170
7.2.6 Pyridoxin (vitamin B6, pyridoxal, pyridoxamin) 171
7.2.7 Cobalamin (vitamin B12) 172
7.2.8 Biotin 173
7.2.9 Folic acid 175
7.2.10 Vitamin C (ascorbic acid) 176
7.3 Vitamin-like substances 177
7.3.1 Choline 177
7.3.2 Myo-inositol 178
7.3.3 Para amino benzoic acid (PABA) 178
7.3.4 Carnitine 179
7.4 References 180
<table>
<thead>
<tr>
<th>8</th>
<th>Sustainable nutrition</th>
<th>191</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>191</td>
</tr>
<tr>
<td>8.2</td>
<td>Feed intake and behaviour during ingestion</td>
<td>192</td>
</tr>
<tr>
<td>8.3</td>
<td>Taste and smell</td>
<td>193</td>
</tr>
<tr>
<td>8.4</td>
<td>Critical phases of feeding with reference to sustainable nutrition</td>
<td>194</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Feeding of suckling piglets</td>
<td>194</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Weaning of piglets</td>
<td>195</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Feeding of empty and pregnant sows</td>
<td>196</td>
</tr>
<tr>
<td>8.5</td>
<td>Feed processing</td>
<td>198</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Physical form</td>
<td>198</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Grinding</td>
<td>198</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Pelleting</td>
<td>200</td>
</tr>
<tr>
<td>8.6</td>
<td>Water</td>
<td>201</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Water intake</td>
<td>201</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Drinking water quality</td>
<td>203</td>
</tr>
<tr>
<td>8.7</td>
<td>References</td>
<td>206</td>
</tr>
</tbody>
</table>

| 9 | Survey of data from the literature concerning composition and energy content of pigs, utilization of amino acids and precaecal digestibility (pcD) of amino acids | 213 |
APPENDIX

Models for further developing the evaluation of protein and amino acids as well as for predicting performance from energy and amino acid intake.

Appendix I 219
Basics of an exponential model of N utilization for evaluating protein retention capacity, amino acid efficiency and performance depending amino acid requirement in the growing pig

1 Introduction and characterization of the model 219
2 Quantifying N maintenance requirement (NMR) 224
3 Estimation of NRmaxT 225
4 Evaluation of AA efficiency 226
5 Assessment of LAA requirements 227
6 References 228

Appendix II 231
A model for describing the effects of energy and amino acid intake on growth and body composition in pigs

1 Importance and need for models 231
2 Description of the model 232
2.1 Aims and principles of the model 232
2.2 Effect of essential amino acids on protein accretion 232
2.2.1 Effect of lysine intake on protein accretion 232
2.2.2 Effect of other essential amino acids on protein accretion 233
2.3 Influence of energy intake and growth capacity on protein accretion 235
2.4 Partitioning and utilization of metabolizable energy 238
2.5 Chemical composition and protein partitioning of the body 239

3 Examples for model application 241
4 References 244